您好、欢迎来到现金彩票网!
当前位置:满堂彩 > 超越射 >

有理数和无理数的关系是怎样的?

发布时间:2019-12-14 13:36 来源:未知 编辑:admin

  有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。实数包括有理数和无理数。

  无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。

  公元前500年,毕达哥拉斯学派的弟子希伯索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形的边长为1,则对角线的长不是一个有理数),这一不可公度性与毕氏学派的“万物皆为数”(指有理数)的哲理大相径庭。

  这一发现使该学派领导人惶恐,认为这将动摇他们在学术界的统治地位,于是极力封锁该真理的流传,希伯索斯被迫流亡他乡,不幸的是,在一条海船上还是遇到毕氏门徒。被毕氏门徒残忍地投入了水中杀害。科学史就这样拉开了序幕,却是一场悲剧。

  有理数包含整数和自然数,有理数与无理数是并列关系,整数包括正整数,负整数,零和自然数。实数包括有理数和无理数。

  无理数的和:可以为有理数,考虑互为相反数的无理数相加无理数的积:可以为有理数,两个相同的根数相乘无理数的除:可以为有理数,两个相同的根数相除无理数的平方:可以为有理数,两个相同的根数相乘有理数和无理数的和:一定为无理数,必然有理数和无理数的差:一定为无理数,必然有理数和无理数的积:两者都可;请考虑0有理数和无理数的商:两者都可;请考虑0

http://kingyalove.com/chaoyueshe/939.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有